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ABSTRACT
Genome-wide association studies (GWAS) have become a popu-
lar method for analyzing sets of DNA sequences in order to dis-
cover the genetic basis of disease. Unfortunately, statistics pub-
lished as the result of GWAS can be used to identify individuals
participating in the study. To prevent privacy breaches, even previ-
ously published results have been removed from public databases,
impeding researchers’ access to the data and hindering collabora-
tive research. Existing techniques for privacy-preserving GWAS
focus on answering specific questions, such as correlations between
a given pair of SNPs (DNA sequence variations). This does not fit
the typical GWAS process, where the analyst may not know in ad-
vance which SNPs to consider and which statistical tests to use,
how many SNPs are significant for a given dataset, etc.

We present a set of practical, privacy-preserving data mining al-
gorithms for GWAS datasets. Our framework supports exploratory
data analysis, where the analyst does not know a priori how many
and which SNPs to consider. We develop privacy-preserving algo-
rithms for computing the number and location of SNPs that are sig-
nificantly associated with the disease, the significance of any statis-
tical test between a given SNP and the disease, any measure of cor-
relation between SNPs, and the block structure of correlations. We
evaluate our algorithms on real-world datasets and demonstrate that
they produce significantly more accurate results than prior tech-
niques while guaranteeing differential privacy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; J.3 [Life and Medical Sciences]: Biology and genetics, health
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1. INTRODUCTION
Genome-Wide Association Studies (GWAS) have become a pop-

ular method to investigate the genetic basis of disease. A typical
study examines thousands of singe-nucleotide polymorphism loca-
tions (SNPs) in a given population of patients for statistical links
to a disease. Recent work has shown, however, that the large vol-
ume of data collected from each patient exposes them to privacy
breaches—even if only the aggregate statistics are reported! Homer
et al. showed that a patient’s disease status can be inferred from
the p-values of the statistical tests associating each SNP with the
disease [12]. Furthermore, Wang et al. showed how correlation
statistics among SNPs can be used to reconstruct patients’ actual
genomes [33]. As a consequence, NIH removed even aggregate
GWAS results from public-access databases, hindering collabora-
tive research on the genetic factors of disease [35].

To support such collaborative research, investigators must be
able to perform typical data mining tasks involved in GWAS in
a manner that preserves privacy of study participants. Differential
privacy provides a mathematically rigorous framework for design-
ing privacy-preserving algorithms, but standard differential privacy
mechanisms [6, 22, 25] cannot be applied directly to GWAS. In a
typical GWAS, the number of outputs (e.g., correlations between
SNPs) is orders of magnitude greater than the number of patients
in the study. The amount of random perturbation that must be ap-
plied to mask the contribution of any single patient scales with the
number of outputs and renders the perturbed results unusable.

Fortunately, the purpose of GWAS is to discover “interesting”
statistics that are most likely to indicate the genetic basis for a given
disease. Privacy-preserving GWAS can be designed to produce a
small number of outputs and thus achieve higher accuracy. Exist-
ing techniques for doing this [2, 8] assume that the analyst knows
beforehand which questions to ask: for example, top k most sig-
nificant SNPs (the analyst must know k) or a specific correlation
measure between a certain pair of SNPs.

In a typical GWAS, however, the number of significant SNPs
and the pairs of correlated SNPs are the output of the study, not
the input! The analyst explores the dataset [24], choosing the most
appropriate statistical tests, discovering the regions of the genome
that look interesting, etc. Existing methods for privacy-preserving
analysis of genetic data do not support this kind of exploration.
Our contributions. We develop an algorithmic framework for ab
initio exploration of case-control GWAS datasets that allows an an-
alyst to obtain privacy-preserving answers to key GWAS queries
without prior knowledge of the “right” questions to ask. Specif-
ically, we design and implement algorithms for accurate, differ-
entially private computation of: (1) the number of SNPs that are
significantly associated with the disease; (2) the location of the
most significant SNPs; (3) p-values for any statistical test between



a given SNP and the disease; (4) the block structure of correla-
tions among SNPs; (5) any measure of correlation between a pair of
SNPs. To achieve this, we develop a general distance-score mech-
anism which may be of independent interest.

We analytically and experimentally evaluate our algorithms on
real and simulated data, demonstrating their practical utility. In
the few cases where a direct comparison with prior techniques is
possible, we show that our algorithms produce significantly more
accurate results. We are able to query hundreds of thousands of
SNPs while getting the exact answer the majority of the time; dis-
cover SNPs with p-values whose magnitude is within 20% of the
maximum possible value in cases where previous work produced
nearly 100% error; and also release the p-values themselves with
an order of magnitude better accuracy for typical values than pre-
vious work. Finally, when patient populations are on the order of
several thousand, we can release correlation blocks covering most
of the interesting parts of the genome that are within 5% error 95%
of the time.

2. PRIVACY-PRESERVING GWAS
A case-control GWAS examines a case population of patients

with a given disease and a control population without the disease.
The genomes of all patients are sequenced at a large number of
SNP locations. GWAS aims to find association between the alleles
at these locations and the disease status of the patient.
Association between SNPs and the disease. The association be-
tween the disease status and individual SNPs is typically measured
using the p-value of a statistical test for independence. p-value
indicates the probability that the observations are due to chance,
assuming the SNP and disease are not actually correlated. GWAS
aims to find SNPs whose p-values are low enough to be significant
(i.e., the association of these SNPs with the disease is unlikely to
be explained by pure chance) in order to further investigate the bio-
logical function of the genes covering these locations and the causal
relationship between these genes and the disease. SNPs with low
significance are not targeted for further research.

Therefore, one of the goals of privacy-preserving GWAS is to
publish—as accurately as possible, while preserving privacy—the
significance levels for the SNPs that are most correlated with the
disease. The number of such SNPs is much smaller than the total
number of SNPs involved in the study.
Correlation among SNPs. Many GWAS also report correlations
among SNPs. SNPs that are significantly associated with the dis-
ease but not correlated with each another may represent indepen-
dent risk factors for the disease and indicate the existence of differ-
ent biological mechanisms associated with the disease.

SNP correlations can be taken from publicly available data rather
than the study-specific patient data (e.g., [5]). This is obviously
safe from the privacy perspective. Using patient data is preferred,
however, when correlations in the study population are expected to
be different from those in the public data. This can happen if the
study population consists of a different racial group than the public
data, if the disease itself affects SNP correlations, or if the set of
SNPs examined in the study are not available in a public dataset.

A study may report individual correlations between SNP pairs of
interest [5, 27], or a “heat map” of the correlations among all SNPs
in a region [5, 13, 27, 28, 34]. Heat maps are often imprecise, but
SNP correlations tend to exhibit a structure that allows the genome
to be segmented into correlation blocks so that correlations are high
within a block and low across blocks [9]. Identifying these blocks
and the small set of likely allele sequences (haplotypes) for each
block is the goal of the International HapMap Project [14].

GWAS may also report high-level patient data, such as popula-
tion demographics and relevant clinical information, and general
data about the genetic sequencing, such as success rates.
The challenges of differentially private GWAS. Direct applica-
tion of standard differential privacy mechanisms to GWAS yields
poor accuracy because the number of outputs is very large rela-
tive to the number of patients in the study. For example, consider
using the basic Laplace mechanism of Dwork et al. [6] to output
the degree of independence between each SNP and the disease,
that is, the p-value of an independence test. Suppose that there
are m SNPs and n patients. The sensitivity of the p-value—the
maximum amount by which it can change when a single patient
is replaced—is O(1/n) because any value in [0, 1] can be reached
by replacing all n inputs. The Laplace mechanism then adds ran-
dom noise with a standard deviation of O(m/n). A typical GWAS
analyzes on the order of m = 105 SNPs over a total patient pop-
ulation on the order of n = 103, thus O(m/n) noise will render
the outputs useless. In general, assuming that the output for ev-
ery SNP reveals independent information about each patient, one
cannot hope that GWAS (1) produces an output for all SNPs, (2)
preserves privacy, and (3) provides useful outputs.

One way to limit the amount of noise that must be added in order
to guarantee privacy is to limit the number of outputs: for example,
publish only the p-values and pairwise correlations of the signifi-
cant SNPs. However, the analyst must determine beforehand which
outputs to publish. For example, Fienberg et al. [8] assume that the
analyst knows in advance the number of “interesting” SNPs and the
statistical tests to use. Similarly, to use the mechanism of Bhaskar
et al. [2] to publish correlation blocks, the analyst must know in
advance the number of blocks to publish, the correlation measure
to use, and a scoring mechanism for choosing the blocks. This is
a “Catch-22”: in practice, the analyst’s choice of these parameters
depends on the actual dataset, and direct application of generic dif-
ferential privacy mechanisms to compute these parameters suffers
from the poor accuracy we wanted to avoid in the first place.

3. TECHNICAL PRELIMINARIES
Let each patient record in the database be I = {0, 1}m+1, where

m is the number of SNPs examined. The first m bits indicate pos-
session of at least one copy of the minor (i.e., less common) allele,
the final bit indicates the disease status of the patient.1 The space of
databases is D = In, where n is the total number of patients. We
fix m and n to be constant over all input databases, and can thus
publish them without privacy loss. Let Di denote the ith patient
vector in database D. Two databases D,D′ ∈ D are neighbors
(D ∼ D′) if they differ only in the data of a single patient.

LetOk`ij (D) = |{h : Dhk = i∧Dh` = j}|, where i, j ∈ {0, 1},
1 ≤ k, ` ≤ m + 1, be the number of patients with a value of i for
the kth input bit and j for the `th bit. Similarly, Oki (D) = |{h :
Dhk = i}|. Let fk`ij (D) = Ok`ij (D)/n be the fraction of patients
with values i and j for bits k and `, respectively, and fki (D) =
Oki (D)/n. Let p : N 4

0 → [0, 1] be a test of independence yielding
a p-value, and let pi(D) be the p-value of the ith SNP as determined
by p. Let c : N 4

0 → [0, 1] be a correlation metric, and let cij(D)
be the correlation of the ith and jth SNPs as determined by c. In
general, we drop the database, superscript, or subscript notation
where it is clear from the context.
Disease association. Statistical tests used to obtain p-values for
independence between a SNP and the disease include χ2 [5, 28,
1This assumes a dominant model of the gene, used, for example,
by Sladek et al. [28]. Our framework works similarly for recessive
and additive models.



34], Fisher’s exact test [5], and logistic regression [13, 27, 34]. The
outcome of an independence test is said to be significant, that is,
sufficiently unlikely to have occurred by chance, when its p-value
falls below a threshold τ (we use τ = .05). When considering m
simultaneous tests, an adjusted threshold of τ/m gives the same
effective significance for all p-values that fall below the threshold.

Our framework is designed to work with any independence test
that yields a p-value. By the nature of differential privacy, the lower
the sensitivity of the test, the more accurate the results. We gener-
ally use the G test [30] for p-values in our analysis because it has
reasonably low sensitivity.
Correlation blocks. Blocks of correlated SNPs can be defined us-
ing the “confidence-interval method” of Gabriel et al. [9] or the
“four-gamete rule” of Wang et al. [32]. The popular HaploView
software package [1] also implements its own “solid spine” method.
All of these methods (1) choose some measure of correlation, (2)
use it to define when a sequence of SNPs constitutes a valid block,
and (3) compute a set of disjoint valid blocks.

Our algorithms for privacy-preserving computation of correla-
tion blocks take the correlation measure as a parameter. Common
measures include the normalized linkage disequilibrium D′ [27,
28], and the correlation coefficient r2 [5, 13, 34]. We use HaploView’s
solid-spine definition of a valid block (Definition 1) because it is
insensitive and simple. Its parameters are τM , a threshold for the
minor-allele frequency (MAF) of a SNP, and τc, a threshold for the
correlation between two SNPs (we use τM = 0.225 and τc = 0.5).
Recall that fk1 denotes the minor-allele frequency of SNP k.

DEFINITION 1. The segment from the kth to the `th SNP, k ≤ `,
is a valid block if all of the following hold: fk1 > τM ; f `1 > τM ;
ck` > τc; and ∀k<i<`(cki > τc ∧ c`i > τc) ∨ f i1 < τM .

This definition uses a MAF threshold because correlation mea-
sures are less reliable (and more sensitive) when the number of
observations is small. Thus, a block is valid if the ends have a
significant correlation and each interior SNP is not significantly
uncorrelated with the ends.

To select a set of disjoint blocks, we greedily choose the longest
valid block that does not overlap with previously chosen blocks. If
the underlying correlation structure is truly a sequence of segments
such that SNPs are correlated within segments and uncorrelated
between segments, this algorithm produces the correct partition.
Furthermore, it helps to maximize the number of SNP pairs that are
revealed to be correlated. Haploview uses similar greedy methods.
Differential privacy. Differential privacy [6] is a popular frame-
work for designing privacy-preserving algorithms. IfD is the space
of possible input databases and R the range of possible outputs, a
mechanismM : D → R is ε-differentially private if, for all D,D′

that differ only in a single input (i.e.,D ∼ D′), Pr[M(D) = r] ≤
Pr[M(D′) = r]eε, where ε is the privacy parameter.

The amount of random noise that needs to be added to the output
of a computation to achieve differential privacy depends on the sen-
sitivity of the computation. For f : D → Rk, sensitivity is defined
as ∆f = maxD∼D′∈D‖f(D)− f(D′)‖1.

Differential privacy “composes” [6]: ifM1 andM2 are ε-differ-
entially private, thenM2 ◦M1 is 2ε-differentially private.

4. GWAS QUERIES
In this section, we give an overview of GWAS queries supported

by our framework. In the following,D ∈ D is the input database; S
is a set ofm SNPs;B is a set of blocks (b1, b2), 1 ≤ b1 ≤ b2 ≤ m;
i, j, k are integers in [1,m]; and ε > 0 is the privacy parameter. For

any differentially private query Q(ε, ·), let Q0 be the “true” value,
which the query would return if privacy had not been a concern.
NumSig(ε,D, p, k) returns the number of significant SNPs in
D as determined by p, with a factor-2 approximation above k.
Let s = |{i : pi(D) ≤ τ |. Then NumSig0 = s if s ≤ k and
NumSig0 = max(2blg(s)c, k) otherwise. Thus for any σ > k, if
NumSig returns σ, then there are at least σ and fewer than 2σ sig-
nificant SNPs. The approximation above k allows the mechanism
to lose accuracy on high values, where it matters less, in exchange
for higher accuracy on low values.
LocSig(ε,D, p,B, k) returns the location of top k SNPs from
B, ordered by increasing p-values as determined by p.
LocBlock(ε,D, c, B, S) returns the location of the longest cor-
relation block, following the definition from Section 3 with c as
the correlation measure, and with the additional constraint that the
segment be wholly contained within some block in B and include
some SNP in S.
SNPpval(ε,D, i, p) returns the p-value of a given SNP, that is,
SNPpval0 = p(O

i(m+1)
00 , O

i(m+1)
01 , O

i(m+1)
10 , O

i(m+1)
11 ).

SNPcorr(ε,D, i, j, c) returns the correlation of two SNPs,
that is, SNPcorr0 = c(Oij00, O

ij
01, O

ij
10, O

ij
11).

Using queries for exploratory GWAS analysis. The above queries
allow the analyst to progress from a rough idea about the number
of significant SNPs to detailed information about their identities,
p-values, and mutual independence. They also enable the analyst
to select the statistical tests and correlation measures that are most
appropriate to the study.

For example, the analyst may begin by using NumSig with pri-
vacy parameter ε/4 to obtain an upper bound k on the number of
significant SNPs. Then, he can obtain their locations S by ex-
ecuting LocSig with privacy parameter ε/4, assuming k is small
enough for all of them to be accurately released. The analyst may
then try to discover the correlation blocks containing the result-
ing SNPs by iteratively executing LocBlock with privacy parameter
ε/(4k), SNP set S, and a block set B that excludes all previously
released blocks. Finally, he can obtain the p-values for the spe-
cific significant SNPs by using SNPpval on the SNPs in S, with
privacy parameter ε/(4k) each time. The resulting outputs will be
ε-differentially private.

This process illustrates the general strategy of using the data
itself to focus on the most useful results while maintaining pri-
vacy and accuracy. Other combinations of queries may be useful,
too. For example, the analyst may want to obtain independent sig-
nificant SNPs located in different blocks. To achieve this, he can
alternate calls to LocSig and LocBlock, asking for only one SNP at
a time and excluding those contained in previously released blocks.
He can also calculate the correlation between significant SNPs via
SNPcorr. Because all queries take statistical measures as parame-
ters, the analyst can choose those most appropriate for the domain
and change them adaptively as data exploration progresses.

5. DISTANCE-SCORE MECHANISM
Many of the queries from Section 4 depend on every SNP in the

input database and thus have high sensitivity, making it challeng-
ing to produce accurate, yet differentially private answers. Further-
more, some of these queries have complicated output spaces.

A standard tool for designing differentially private algorithms for
complex spaces is the exponential mechanism [22]. To apply this
mechanism, one must define a score function q : R ×D → R that
assigns a value to each possible (output, input database) pair. The
exponential mechanism Eεq,∆ has output distributionPr[Eεq,∆(D) =



r] ∝ e
q(r,D)ε

2∆ .
In this paper, we define a general score function d called the

distance score that works for arbitrary output spaces. In addition,
Theorem 9 shows that it is highly accurate because it approximates
the best possible scores under the requirement that the correct out-
put must have the highest score.

Let f : D → R be the query. The score is computed as follows:

d(r,D) =



− 1

if f(D) 6= r ∧ ∃D′∼Df(D′) = r

− 1 +maxD′∼Dd(D′, r)

if f(D) 6= r ∧ @D′∼Df(D′) = r

0

if f(D) = r ∧ ∃D′∼Df(D′) 6= r

1 +minD′∼Dd(D′, r)

if f(D) = r ∧ @D′∼Df(D′) 6= r

(1)

Intuitively, scores given by d are based on the distance from the
input database to the “edge” of the set of databases for which a
given output is the true output. Its sensitivity ∆d = 1 because
moving to a neighboring database can only change the distance to
the edge by 1. We use the term distance-score mechanism for the
exponential mechanism equipped with this score function and sen-
sitivity: Eεd,∆d .

When the score d is not efficiently computable, we use a lower
bound on the distance that also has sensitivity of at most 1. To the
extent that these lower bounds approximate the true distance, they
also approximate the best scores possible.

6. QUERY MECHANISMS
In this section, we give privacy-preserving mechanisms for eval-

uating the queries of Section 4. Proofs of privacy theorems appear
in the full version of this paper. We note that these mechanisms can
be implemented in polynomial time, although we omit the details.

6.1 Number of significant SNPs
The worst-case sensitivity of NumSig0 is m because there exists a
database in which every SNP count is one patient away from cross-
ing the significance threshold. Applying the Laplace mechanism
thus requires Lap(m/ε) noise, completely destroying the utility of
NumSig0 the true value of which ranges from 0 to m.

Instead, NumSig uses the distance-score mechanism of Section 5
with an approximate distance function. NumSig also improves ac-
curacy where important—where there are a small number of sig-
nificant SNPs—by reducing the output space to a set of intervals
such that smaller SNP counts are contained in smaller intervals.
Instead of the actual distances, we use lower bounds that can be
computed efficiently. We first compute, for each individual SNP i,
the distance dpi to an input database in which this SNP is significant,
where significance is determined by the input function p and nega-
tive values indicate the distance to a p-value that is not significant.
We then consider the next larger value of NumSig0.

Let j be the number of additional SNPs that must be significant
for this value to be the true query answer. To lower-bound the dis-
tance to a database such that NumSig0 takes this larger value, we
order the non-significant SNPs by their distances dpi and use the jth
smallest one. Lower bounds on distances for outputs smaller than
the true answer are calculated similarly.

Formally, let dpi (D) be the minimum number of rows in D that
must be modified to change whether or not the ith SNP is below the

threshold; the sign of dpi indicates the significance of the ith SNP:

dpi (D) =


max{r : |{j : Dj 6= D′j}| < r
⇒ pi(D

′) ≥ τ } if pi(D) ≥ τ
−max{r : |{j : Dj 6= D′j}| < r
⇒ pi(D

′) < τ } otherwise
(2)

Let π be the permutation that sends SNPs sorted by increasing
distances dpi to their original position (that is, π−1(i) < π−1(j)⇒
dpi (D) < dpj (D)). LetR be the range of NumSig. Let σi be the ith
smallest output in R, that is, σi = i for 0 ≤ i ≤ k and σi = 2bic

for i ≥ k. The following score function provides the desired lower
bound on the distance score (Equation 1):

For 0 < i < |R| − 1,

q1(σi, D) =



min
(
−dpπ(σi)

(D), dpπ(σi+1)(D)
)
− 1

if (pπ(σi)(D) < τ) ∧ (pπ(σi+1)(D) ≥ τ)

dpπ(i+1)(D)

if (pπ(σi)(D) < τ) ∧ (pπ(σi+1)(D) < τ)

− dpπ(σi)
(D) otherwise

,

q1(σ0, D) =

{
dpπ(σ1)(D)− 1 if pπ(σ1) ≥ τ
dpπ(σ1)(D) otherwise ,

and

q1(σ|R|−1, D) =

{
−dpπ(σ|R|−1)(D)− 1 if pπ(σ|R|−1) < τ

−dpπ(σ|R|−1)(D) otherwise .

NumSig then uses the exponential mechanism and outputs Eεq1,1(D).
The sensitivity of the score function q1 is, as with a true distance

function, at most 1. Differential privacy then follows directly from
the exponential mechanism.

THEOREM 1. NumSig satisfies ε-differential privacy.

6.2 Location of significant SNPs
To allow accurate release of the identities of the significant SNPs,

LocSig limits the number of revealed SNPs to a user-specified pa-
rameter k. The smaller k, the more accurate the output of LocSig.
The LocSig mechanism is given in Algorithm 1. It uses the distance
to significance as the score for a SNP and then iteratively applies
the exponential mechanism on the SNPs in B, with the privacy
budget of ε/k for each iteration.

Algorithm 1 LocSig mechanism
1: function LOCSIG(ε,D, p,B, k)

2: q2(i,D)←
{
−∞ if @b∈Bi ∈ b
dpi (D) otherwise

3: for j ← 1, k do
4: sigs[j]← Eε/kq2,1

(D)

5: q2(i,D)←
{
−∞ if i = sigs[j] ∨ @b∈Bi ∈ b
q2(i,D) otherwise

6: return sigs

Privacy of LocSig follows from that of the exponential mecha-
nism and the compositionality of differential privacy.

THEOREM 2. LocSig satisfies ε-differential privacy.



6.3 Location of correlation blocks
There are 2m−1 ways to fully partition a region with m SNPs

into blocks. The huge size of this output space does not allow both
privacy and accuracy when the size of the input n << m.

LocBlock just outputs the longest block such that the output
is within some block b ∈ B and contains some SNP s ∈ S.
Thus the output range can be limited only to the areas of most
interest, improving accuracy. LocBlock uses the distance-score
mechanism but with an approximate distance function that uses
efficiently-computable distance lower bounds. We build up these
bounds through a series of intermediate bounds for functions re-
lated to the longest block.

Let d1
k(D) be the minimum number of patients whose input to

D must be changed to reduce the MAF of the kth SNP to below
τM . Let d2

k`(D, c) be the minimum number of patients whose input
must be changed to bring the MAF of SNPs k and ` above τM
and the correlation between the SNPs above τc. Let d3

k`(D) be the
minimum number of patients whose input must be changed to bring
the MAF of SNPs k and ` above τM and the correlation between
the SNPs below τc.
d4
k`(D, c) is a lower bound on the distance from D to a database

for which the (k, `) segment is a valid block. To obtain d4, we
observe that (i) the distance to a database satisfying a conjunction
of conditions is at least the maximum of the distances to each of
the conditions individually and (ii) the distance to a database sat-
isfying a disjunction of conditions is at least the minimum of the
distances. A lower bound on the distance to satisfying the first
three conditions of Definition 1 is already given by d2

k`(D, c). A
lower bound on satisfying all four conditions can thus be given by

d4
k`(D, c) = max

(
d2
k`(D, c),

max
k<i<`

(
min(d1

i (D), d2
ki(D, c)),min(d1

i (D), d2
i`(D, c))

))
.

We can similarly obtain a lower bound d5
k`(D, c) on the distance

to a database for which (k, `) violates some condition of Defini-
tion 1 and thus is not a valid block: d5

k`(D, c) =

min

(
d1
k(D), d1

`(D), d3
k`(D, c), min

k<i<`

(
d3
ki(D, c), d

3
i`(D, c)

))
.

d6
k`(D, c,B, S) gives a lower bound on the distance to a database

for which the (k, `) segment is the longest valid block among those
within some b ∈ B and containing some s ∈ S. For (k, `) to be
such a block, (i) it must be a valid block within some b ∈ B and
containing some s ∈ S, and (ii) every longer block within some
b ∈ B and containing some s ∈ S must not be valid. Let the set
of blocks longer than (k, `), within some b ∈ B, and containing
some s ∈ S be Lk`. A lower bound on the distance to becoming
the longest valid block is
d6
k`(D, c,B) = max

(
d4
k`(D, c),max(g,h)∈Lk`

(
d5
gh(D, c)

))
.

d7
k`(D, c,B, S) gives a lower bound on the distance to a database

for which the (k, `) segment is not the longest valid block among
those contained within some b ∈ B and containing some s ∈ S.
For this to be the case, either (i) (k, `) must not be a valid block
within some b ∈ B and containing some s ∈ S, or (ii) there must
exist a longer valid block within B and intersecting S. Thus, the
following is a distance lower bound on (k, `) not being the longest
valid block:
d7
k`(D, c,B, S) = min

(
d5
k`(D, c),min(g,h)∈Lk`

(
d4
gh(D, c)

))
.

The mechanism LocBlock(ε,D, c,B, S) has rangeR = {(i, j) :
1 ≤ i ≤ j ≤ m}. The following score function on R uses the dis-
tance lower bounds as the distance score (Equation 1) would use

the true distances:

q3(B,S; (i, j), D) =
−∞ if (@(b1,b2)∈Bi ≥ b1 ∧ j ≥ b2)∨

@s∈Si ≤ s ≤ j
d7
ij(D, c,B, S)− 1 if d7

ij(D, c,B, S) > 0
−d6

ij(D, c,B, S) otherwise

.

The sensitivity of q3 is, as with a true distance function, at most 1.
LocBlock simply applies the exponential mechanism Eεq3,1.

THEOREM 3. LocBlock satisfies ε-differential privacy.

6.4 P-value of a given SNP
As explained in Section 2, the sensitivity of the p-value is at least

1/n, while significant values themselves are at most the threshold
value, which is less than 1/m (where n << m). A direct appli-
cation of the Laplace mechanism would add noise with a standard
deviation of at least 1/n, completely obscuring the values.

Instead, we use the Laplace mechanism to output the counts for
each possible allele-population pair for the ith SNP. These counts
have low sensitivity, and independence tests are generally robust to
small changes in the counts, allowing the p-value to be computed
with good accuracy. Let the noise random variables Njk, j, k ∈
{0, 1}, be independent and have distribution Lap(2/ε).2 We com-
pute the privacy-preserving versions of these counts as Ôjk(D) =

max(O
i(m+1)
jk (D) +Njk, 0). We then compute SNPpval as

p(Ô00(D), Ô01(D), Ô10(D), Ô11(D)).
Privacy of SNPpval follows directly from that of the Laplace

mechanism [6].

THEOREM 4. SNPpval satisfies ε-differential privacy.

6.5 Correlation of SNPs
For similar reasons as in Section 6.4, we add noise to the counts

of pairwise values for i and j rather than directly to the correlation
measure. The privacy-preserving correlation measure is then com-
puted from the noisy counts. Let the random variables Nk`, k, ` ∈
{0, 1}, be independent and have distribution Lap(2/ε). The noisy
pairwise counts for SNPs i and j are Ôk`(D) = max(Oijk`(D) +
Nk`, 0). SNPcorr is then computed as
c(Ô00(D), Ô01(D), Ô10(D), Ô11(D)).

SNPcorr uses essentially the same mechanism as SNPpval.

THEOREM 5. SNPcorr satisfies ε-differential privacy.

7. UTILITY
We evaluate the utility of our mechanisms using both theoreti-

cal and experimental analysis. For two query types (location and
p-values of significant SNPs), we show that our mechanisms give
significantly more accurate answers than prior state of the art [8];
for the other queries, this paper gives the first known construction.
Proofs of the theorems and detailed experimental descriptions ap-
pear in the full version of the paper [15].

7.1 Number of significant SNPs
We evaluate NumSig on data from the GWAS on Irritable Bowel

Syndrome (IBS) by Duerr et al. [5]. This study involves 1138 pa-
tients, 567 of whom have the disease and 571 do not, and sequences

2The distribution Lap(b) has density function f(x) =

e−|x|/b/(2b)



a total of 308,332 SNPs. Among these, it finds several SNP associ-
ations within a region of the genome that codes for a known gene
and publishes the counts for all 42 studied SNPs in this region. We
include the counts for these 42 SNPs into our input dataset. We ex-
tend these tom total counts by randomly selecting minor-allele fre-
quencies and then counts based on those frequencies. These added
counts simulate the SNPs not published in the IBS study because
they are likely independent of the disease. The accuracy of privacy-
preserving outputs is very dependent on the size of the database,
thus we consider different population sizes n. We increase n for
the significant SNPs above n = 1138 in the IBS study by taking
the observed allele frequencies in the case and control populations
as probabilities and sampling n times.

We consider the accuracy of NumSig on m = 105 total SNPs,
which is a typical magnitude for GWAS. We set the NumSig accu-
racy threshold to k = 1, and we use the significance threshold of
τ = .05/105. The G test is used to calculate p-values because it is
simple yet has low sensitivity. The correct output in our experiment
is NumSig0 = 2.

Figure 1 displays as a function of the patient population the prob-
ability of the correct output and the upper limit of the output values
in the 95th and 99th percentiles. It also shows the effect of chang-
ing the privacy parameter by using the values ε ∈ {0.2, 0.6, 1}.
The figure shows that, for ε = 1 and at the IBS-study population

Figure 1: Output of NumSig, m = 105, NumSig0 = 2

size of n = 1138, the probability of NumSig = 2 is greater than .5,
and the probability that the output range extends beyond 128 is less
than 5%. The accuracy of NumSig quickly improves with larger
patient populations: when n = 3000 and ε = 1, the probability
of an incorrect output is less than 1%. The figure also shows that
increasing ε by some factor provides about the same improvement
in accuracy as if instead the population were increased by the same
factor.

To understand the dependence of NumSig on n, consider in-
creasing n by scaling eachOij by some constant ρ. Then theG test
statistic also increases by a factor ρ. This is essentially what hap-
pens to the significant SNPs as we increase n in our experiments
(although with sampling error). The G test statistics of the other
SNPs remain small, assuming they are truly independent. Thus
the distances to changing the significance of a SNP increase lin-
early with ρ, thus the probability of producing the correct output
increases exponentially.

7.2 Location of significant SNPs
LocSig may publish k SNPs that are very different from the true

top k, but the published SNPs are likely to have p-values that are

nearly as small as those of the true top k SNPs. The usefulness of
the published SNPs increases as their p-values decrease, thus the
output of LocSig is likely to be as useful as the true top k.

It is straightforward from the definition of the exponential mech-
anism that a given SNP is exponentially less likely to be output by
LocSig the further its counts get from significance. To be able to
make a statement about the p-values themselves, suppose that sig-
nificance is determined via the G test. Let p1 ≤ . . . ≤ pk be the k
smallest p-values for the SNPs in the input. Let Pmin and Pmax be
the smallest and largest p-values in the output of LocSig, respec-
tively. Theorem 6 says that the exponents of the p-values of the
released SNPs are exponentially likely to be near those of the true
top k SNPs. Observe that the rate at which the probability increases
is relative to k and has only a weak dependence on m.

THEOREM 6. For pmax ≥ pk and pmin ≥ p1,

Pr[ln(1/Pmin) > ln(1/pmin) ∧ ln(1/Pmax) > ln(1/pmax)]

≥
(

1−meε(ln(1/pmin)−(1−o(1)) ln(1/p1))/(2∆q)
)
·(

1−mkeε(ln(1/pmax)−(1−o(1)) ln(1/pk))/(2k∆q)
)

We evaluate LocSig, too, on the data from the IBS GWAS by
Duerr et al. [5] extended with extra SNPs. This time, to obtain an
even more realistic distribution of p-values, we extend the num-
ber of SNP counts to m = 105 by taking the extra SNPs from the
HapMap [14] data, specifically from a contiguous region that cov-
ers the one published by the IBS study. We change the population
size by independently sampling the SNP values for both case and
control populations using their minor-allele frequencies as proba-
bilities.

The results of evaluating LocSig on this dataset are in Figure 2.
We use the G test as our test of independence p. For comparison,
we also show the results of the top-k SNP publication mechanism
by Fienberg et al. [8]. It applies the Laplace mechanism to the χ2

statistic of each SNP, then releases k SNPs with the highest per-
turbed values. It relies on the assumption that case population is
always restricted to n/2, which makes the privacy guarantee much
weaker; we show the performance with and without this assump-
tion (denoted “restricted” and “unrestricted”, respectively). The
experiment uses ε = 1 and k = 2.

Figure 2: Relative error in top k significant SNPs: ε = 1, m =
105, k = 2

To evaluate the output, we sum the p-value exponents − ln(pi)
of the output SNPs, and we consider the difference between this



sum and the same sum for the correct output. The figure shows the
relative value of this difference, i.e., what fraction of the exponent
sum is lost by the mechanism. Figure 2 shows that by n = 3000
LocSig has no error with probability greater than 0.5, and that by
n = 5000 it has no error with probability greater than 0.99. On
the other hand, the restricted Laplace-based mechanism has greater
than 40% error with probability at least 0.5 even for populations
as large as n = 5000. The unrestricted Laplace mechanism is
completely unusable, as for all population sizes it produces over
95% error with probability at least 0.99.

7.3 Location of correlation blocks
We evaluate LocBlock over the SNP region published in the

Duerr et al. GWAS [5]. That study published a correlation heat
map of a region with m = 264, in which three blocks are sufficient
to cover over half the region. We use individual SNP sequences
from HapMap starting from the beginning of that region and in-
cluding m = 250 following SNPs. The HapMap data included
n = 1011 patients, which we increase by resampling and decrease
by subsampling. We use the correlation coefficient (c = r2), and
set the privacy parameter ε = 1.

To evaluate the “quality” of an output, we consider both the cor-
relations within the released blocks and the number of SNPs cov-
ered by these blocks. We compute the largest number of SNPs the
output shares with some valid block and subtract the number of
SNPs that are not shared, then take the sum of these values over all
blocks. More precisely, let B ⊆ {(k, `) : 1 ≤ k ≤ ` ≤ m} be the
set of valid, possibly overlapping, blocks (Definition 1). Given an
output block (k, `), we define its value v as

v(k, `) = max
(i,j)∈B

|{g : (i ≤ g ≤ j) ∧ (k ≤ g ≤ `)}|−

|{g : (g > j ∨ g < i) ∧ (k ≤ g ≤ `)}| .

An output block that is different from the actual top block can
still have a high value if it represents another valid block of similar
total length. In addition, an output block with boundaries that differ
by only a small amount from a valid block has only slightly lower
value. This captures the utility of a set of blocks for finding SNP
correlations.

Figure 3 illustrates the distribution of values obtained by sam-
pling from the output distribution 1000 times, as a function of the
patient population size. LocBlock is used three times with the pri-
vacy parameter 1/3, for the overall guarantee of ε = 1. The values
are shown relative to the maximum possible value v∗ for the given
number of blocks k.

Figure 3: Value percentiles of LocBlock: m = 250, ε = 1

In general, outputs are accurate when the number of output blocks
is small or the patient population is large. For example, the out-
put is optimal over half the time for a typical population size of
n = 1000 when we limit the number of blocks to one. With three
blocks, the output reaches the optimal value over half the time when
the number of patients n is increased to 5000. In addition, at only
n = 2500, with probability 0.99 the released blocks capture over
half of the optimal value, indicating that they give a reasonable pic-
ture of the correlation structure in that region.

The effect of increasing the population (ignoring sampling er-
ror) is to increase all distances linearly, and therefore to improve
the probability of the highest-value outputs exponentially. Consider
increasing all pairwise countsOk`ij by some factor ρ. This increases
the distance for a SNP to any given minor-allele frequency ρ times,
and, because the value of r2 is constant in ρ, it increases the dis-
tance to any given correlation value ρ times. Thus d1–d3 increase
by a factor ρ. d4–d7 then also scale with ρ because they are simply
maxima and minima of d1–d3 and constants. This implies that the
score function q3 becomes ρq3, and therefore the probability of the
highest-value outputs increases exponentially in ρ.

7.4 P-value of a given SNP
The accuracy of the disease-association p-values calculated from

the noisy counts Ôjk depends on the sensitivity of the statistical test
with respect to these counts. We consider the p-values calculated
according to the G test. Let p̂ be the noisy p-value.

The Laplace distribution of the noise has exponentially decreas-
ing tail probabilities, and we combine this fact with bounds on the
sensitivity of the G test statistic to give tail bounds for the magni-
tude of p̂. To understand the effect of population size, we consider
counts that grow with the population size while keeping constant
the count fractions, that is, Oij = nfij .

THEOREM 7.

Pr

[∣∣ ln(p̂)− ln(p)
∣∣ > (1 + o(1))

(
16δ

∣∣∣∣ln( f00

f0f1

)∣∣∣∣)]
< 4e−δε/2.

Theorem 7 shows that the noisy answers are likely to give good
estimates of the smallest (and thus most interesting) p-values.

Figure 4 shows an experimental evaluation of SNPpval, directly
comparing our mechanism with Fienberg et al. [8]. The latter re-
leases both private p-values and χ2 statistics by directly adding
Laplace noise. Because it uses Pearson’s χ2 statistic for both, we
use it for all mechanisms in the experiments. As before, we give re-
sults with and without the assumption that the numbers of case and
control patients are both restricted to n/2 in all input datasets. The
experiments were done over a range of inputs, each with n = 1000
and minor-allele frequency of 0.2, typical for GWAS. The privacy
parameter was ε = 0.2, and for each input we sampled from the
output distribution 1000 times. We measure accuracy as the root
mean squared error of the logarithm of the output p-values.

The figure shows our mechanism almost always gives more ac-
curate results. In particular, for p-values of at least 10−15, which is
the typical range for GWAS results, our mechanism is an order of
magnitude more accurate. Furthermore, adding noise directly to
the p-value or the χ2 statistic without the restricted-row-count as-
sumption produces unusable answers. With the prior mechanisms,
added noise is often larger than the possible range of the true value.

7.5 Correlation of SNPs
To evaluate SNPcorr, we again use the correlation coefficient

c = r2 and let Oij = nfij . Also, let r̂2 be the noisy correlation



Figure 4: Root mean squared error of noisy p-values: n =
1000, ε = 0.2, MAF=0.2

coefficient. The exponentially decreasing tail probabilities of the
noise’s Laplace distribution combined with bounds on the sensitiv-
ity of r2 imply the following bound on the change in r2:

THEOREM 8. Pr[|r̂2 − r2| > 32δ/n] < 4e−δε/2

Theorem 8 shows that the output of SNPcorr is exponentially close
to the correct value and the width of the tail distribution is inversely
proportional to n.

7.6 Distance-score mechanism
Under the requirement that the correct output always has the

highest output probability, distances measured by d (Equation 1)
constrain how much larger the correct output’s score can be than
that of other outputs. Theorem 9 shows that, as a result, d approxi-
mates the best possible score. Let Q = {q : R×D → R|f(D) =
r ⇒ q(r,D) ≥ q(r′, D)}. Note that d ∈ Q.

THEOREM 9. For all q ∈ Q, D ∈ D, and r ∈ R,

d(f(D), D)− d(r,D) ≥ (q(f(D), D)− q(r,D))/(2∆q)

Without the requirement that the correct output always has the
highest score, a single mechanism cannot yield competitive scores
on all inputs. For example, a mechanism that keeps the scores con-
stant can assign an arbitrarily high score to any one output. Simi-
larly, normalizing by ∆q is necessary because scaling a score func-
tion does not affect the output distribution of the exponential mech-
anism.

8. RELATED WORK
Homer et al. [12], followed by Wang et al. [33], demonstrated

the privacy risks of publishing GWAS results. The problems they
identified received much attention from medical researchers [4],
and NIH immediately removed public access to the data [35].

Sankararaman et al. [26] show how to limit the statistical power
of Homer’s attack by restricting the amount of data published. Loukides
et al. [18] suggest using well-known generalization and suppres-
sion techniques [29], but this approach is known to have inherent
flaws [17, 19].

Differential privacy [6] is a promising approach to privacy-preserving
data publishing. It has been successfully applied to search logs [16],
movie-viewing records [21], network traces [20], and social net-
works [11]. General-purpose mechanisms for differentially private
data release (e.g. [6, 22, 25]) cannot be directly applied to GWAS

data, however, because both the set of possible inputs for each pa-
tient and the number of outputs are very large, while most mecha-
nisms rely on one of these being small in order to provide accurate
outputs. We do observe that, similar to our distance-score mecha-
nism, smooth sensitivity [23] does provide instance-dependent ac-
curacy. However, computing the required smooth bound appears
difficult in general, and our attempt to use this mechanism did not
yield satisfactory accuracy [15].

Dwork and Lei [7] consider general methods for turning robust
statistical estimators into differentially private estimators. Our rec-
ommendations for insensitive independence tests and correlation
statistics echo this work.

Our distance-score mechanism defines scores that are approxi-
mately optimal; Ghosh et al. [10] and Brenner and Nissim [3] in-
vestigate the problem of finding truly optimal mechanisms.

Applying differential privacy to GWAS while preserving utility
requires domain-specific solutions. Fienberg et al. [8] consider how
to publish minor-allele frequencies, χ2 statistics, and p-values; they
also adapt the method of Bhaskar et al. [2] to release k most sig-
nificant SNPs. Their approach, however, makes several restrictive
assumptions, including a fixed population size, considers only the
χ2 test, and, critically, assumes that the analyst knows in advance
k, the number of SNPs to publish. Furthermore, as we show in Sec-
tion 7, their mechanism often produces highly inaccurate outputs.
Vu and Slavković [31] also consider applying differential privacy
to medical research data, but focus on determining the population
size needed to provide a given power to statistical tests when noise
is added using standard mechanisms.

9. CONCLUSION
As a consequence of recent research on privacy risks in genome-

wide association studies [12, 33], medical researchers now face ob-
stacles to sharing their data and results. Differential privacy offers
an approach to the problem that provides a rigorous privacy guar-
antee without unrealistic assumptions about the adversary’s knowl-
edge (in contrast to other approaches [18]).

Unfortunately, the massive amount of per-patient data involved
in GWAS causes standard differential privacy mechanisms to pro-
duce highly inaccurate results. Previously proposed adaptations of
differential privacy to GWAS are limited in scope and flexibility. In
particular, they require the data analyst to know or guess in advance
features of the data, such as the number of genetic locations that are
associated with the disease.

In this paper, we develop a toolkit of privacy-preserving queries
for GWAS that enable data exploration without any background
knowledge or assumptions. Our queries allow the analyst to learn
the number, location, and p-values of SNPs that are significantly
correlated with the disease, as well as the correlation-block struc-
ture of the genome in the areas of most interest. The statistical
tests and measures can be determined during data exploration itself
rather than fixed beforehand. This helps analysts to quickly iden-
tify and focus on the aspects of the genome that are most likely to
yield clinically interesting results.

Analytical and empirical analysis shows that our mechanisms
achieve much better accuracy than prior state of the art. We also
develop a general distance-score technique for designing accurate,
differentially private mechanisms on complex output spaces.

The accuracy of our outputs could be increased through compu-
tational advances by improving the distance approximations used
in several of our queries. In addition, incorporating biological con-
straints into the possible inputs from a single patient is likely to
result in more accurate mechanisms.

A question outside the scope of this paper is how accurate the



outputs need to be in order to be useful to medical researchers.
Like other applications of differential privacy, our results include
non-trivial amounts of random noise, although inaccuracy can be
reduced by increasing the number of patients in the study. Finding
the right balance between accuracy, privacy, and study costs must
be informed by the needs of medical researchers.
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